Minimal Subshifts of Arbitrary Mean Topological Dimension
نویسنده
چکیده
Let G be a countable infinite amenable group and P be a polyhedron. We give a construction of minimal subshifts of P with arbitrarily mean topological dimension less than dimP .
منابع مشابه
Topological Full Groups of Minimal Subshifts and the Classification Problem for Finitely Generated Complete Groups
Using results on the structure of the topological full groups of minimal subshifts, we prove that the isomorphism relation on the space of finitely generated complete groups is not smooth.
متن کاملTopological Entropy Dimension and Directional Entropy Dimension for ℤ2-Subshifts
The notion of topological entropy dimension for a Z-action has been introduced to measure the subexponential complexity of zero entropy systems. Given a Z2-action, along with a Z2-entropy dimension, we also consider a finer notion of directional entropy dimension arising from its subactions. The entropy dimension of a Z2-action and the directional entropy dimensions of its subactions satisfy ce...
متن کاملTopological Entropy Dimension and Directional Entropy Dimension for Z2-Subshifts
The notion of topological entropy dimension for a Z-action has been introduced to measure the subexponential complexity of zero entropy systems. Given a Z2-action, along with a Z2-entropy dimension, we also consider a finer notion of directional entropy dimension arising from its subactions. The entropy dimension of a Z2-action and the directional entropy dimensions of its subactions satisfy ce...
متن کاملDynamically Deened Recurrence Dimension
In this paper, we introduce and characterize the dynamically deened recurrence dimension, a new topological invariant number, following the idea of a previous article 9], but with some modiications and improvements. We study some example of Toeplitz subshifts for which we can show that the recurrence dimension is a topologically invariant number diierent from the topological entropy.
متن کاملSets of “non-typical” Points Have Full Topological Entropy and Full Hausdorff Dimension
For subshifts of finite type, conformal repellers, and conformal horseshoes, we prove that the set of points where the pointwise dimensions, local entropies, Lyapunov exponents, and Birkhoff averages do not exist simultaneously, carries full topological entropy and full Hausdorff dimension. This follows from a much stronger statement formulated for a class of symbolic dynamical systems which in...
متن کامل